SYLLABUS

OF

M. TECH (Structural Engineering) I YEAR

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABI AND EVALUATION SCHEME M.Tech. (Structural Engineering)

(w.e.f. 2020-21)

Sen	nester – I	I										
				I	Period	S	Credits	F	Evaluat	eme		
S. No.	Course Category	Code No	Name of Subject	L	LT		С	C A	ontinuo ssessmo (CA)	ous ent	Exam ESE	Subject Total
								UE	ТА	Total		
1	DC	CE501	Theory of Elasticity and plasticity	3	1	-	4	40	20	60	40	100
2	DC	CE502	Advanced Structural Analysis (Matrix Approach)	3	1	-	4	40	20	60	40	100
3	DC	CE503	Advanced Concrete Design	3	1	-	4	40	20	60	40	100
4	DE		Elective -I	3	1	-	4	40	20	60	40	100
5	DC	CE509	Structural Engg Lab	-	-	3	2	40	20	60	40	100
			Total				18					500

Sen	nester – I	Π										
				Periods			Credits	E	valuat	eme		
S. No.	Course Category	Code No	Name of Subject	L	LT		С	C A	ontinuo ssessmo (CA)	ous ent	Exam ESE	Subject Total
								UE	ТА	Total		
1	DC	CE510	Structural Dynamics	3	1	-	4	40	20	60	40	100
2	DC	CE511	Numerical Analysis and Finite Element Method	3	1	-	4	40	20	60	40	100
3	DC	CE512	Advanced Steel Structures	3	1	-	4	40	20	60	40	100
4	DC	CE552	Research Methodology	3	1	-	4	40	20	60	40	100
5	DC	CE514	Seminar	-	-	3	2	-	-	60	40	100
			Total				18					500

UE- Unit Exam, **TA-** Teacher Assessment; **ESE** – End Semester Examination. Note: Duration of ESE shall be 03 (Three) hours per subject

M. Tech (Structural Engineering)

List of the Elective Paper:

<u>Elective – I</u>

CE504	Concrete Technology
CE505	Design of foundation structures
CE506	Design of steel Concrete composite Structures
CE513	Theory of Plates and Shell

<u>Elective – II</u>

CE601	Design of Bridges
CE602	Stability of Structures
CE603	Maintenance and Rehabilitation of Structures

<u>Elective – III</u>

CE607	Industrial Structures
CE608	Prefabricated Structures
CE612	Computer Aided Design in Structural Engineering

Elective – IV

CE606	Design of Tall Buildings
CE611	A Seismic Design of Structures
CE613	Prestressed Concrete

TA- Teacher Assessment; ESE – End Semester Examination; CT- Cumulative Test. Note : Duration of ESE shall be 03 (Three) hours per subject.

Effective from Session: 2016-17									
Course Code	CE501	Title of the Course	Theory of Elasticity and Plasticity	L	Т	Р	С		
Year	1 st	Semester	1 st	3	1	0	4		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives	• To ma	To make learner understand the concept of Elasticity & Plasticity of material.							

	Course Outcomes
CO1	Knowing the basics of elastic theory, learner will understand the concept of stress tensor & stress Invariants and be able to
COI	perform axis transformation in Cartesian coordinates.
con	In two dimensional Cartesian coordinate system, learner will understand about bi-harmonic equation for plane stress and be
02	able perform elastic calculation of stress and strain.
CO2	In two dimensional Polar coordinate system, learner will understand equilibrium and compatibility equations and be able
COS	perform elastic calculation of stress and strain.
CO4	Knowing the plastic behavior, learner will understand analysis principle and be able to establish failure criteria.
CO5	To make learner understand bending behavior of beam in plastic torsion and able to perform deformation analysis of it

Unit No.	Title of the Unit	Contact Hrs.	Mapped CO						
1	Introduction	tion Analysis of stress and strain, Stress strain relationship. Generalized Hooke's Law. Plane stress and plane stress plane strain.							
2	Stress and Strain in Cartesian Co- Ordinates	Stress and Strain in Cartesian Co- Ordinates Two dimensional problems in Cartesian co-ordinates for simple problems of structures.							
3	Stress and Strain in Polar Co- Ordinates	Two dimensional problems in polar co-ordinates for simple problems of structures.	08hrs	CO3					
4	Introduction to Plasticity	to Introduction to problems in plasticity. Physical assumption- criterion of yielding, yield surface, Flow rule (plastic stress strain relationship).							
5	Elasto-Plasticity	ty Elastic plastic problems of beams in bending- plastic torsion. 08hrs CO5							
		Reference Books:							
	Timoshenko, S. ar	nd Goodier T.N. "Theory of Elasticity" Mc Graw Hill Book Co. Newyork. II Edition	1988.						
	Chwo P.C. and pa	gano, N.J. "Elasticity Tensor, Dyadic and Engineering applications" D.Van Nestrand	Co. In Co.	1967.					
	Chenn, W.P and H	Ienry D.J. "plasticity for structural Engineers", Springer Verlag New Yark 1988.							
	Sadhu Singh, "Theory of Elasticity", Khanna publishers, New Delhi 1988.								
	Verma PDS, "Theory of Elasticity", Vikas publishing Pvt. Ltd. New Delhi – 1997.								
	Sadhu Singh, "Theory of plasticity", Khanna publ								
		e-Learning Source:							

https://nptel.ac.in/courses/105105177/

			Co	urse Art	ticulatio	n Matri	x: (Map	ping of	COs wi	th POs a	nd PSOs))		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	0	1	0	0	0	0	2	0	0	0	0
CO2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO4	2	3	3	0	1	0	0	0	0	2	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1- I	Low Cor	relation	; 2- Mo	derate (Correlat	ion; 3- \$	Substan	tial Corr	elation			

Effective from Session: 2	Effective from Session: 2016-17							
Course Code	CE502	Title of the Course	Advanced Structural Analysis (Matrix Approach)		Т	Р	С	
Year	1 st	Semester	1 st	3	1	0	4	
Pre-Requisite	NIL	Co-requisite	NIL					
Course Objectives	 To de To an 	veloped understandir alyze the structures u	g of structural analysis by matrix approach. sing displacement methods and force methods.					

	Course Outcomes
CO1	To understand the basis methods of structural analysis and basic concepts of matrix approach.
CO2	Learner will be able to formulate displacement matrix and analyses continuous beams, rigid & pin jointed plane frames
	by displacement method.
CO3	Learner will be able to formulate flexibility matrix and analyze rigid jointed plane frames by force method.
CO4	Learner will be able to analyze rigid & pin jointed space frames & space using displacement method.
CO5	Learner is familiarized with static condensation procedure and will be able to analyses large structures using sub
	structuring technique.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Review of Basic Concept in Structural Analysis & Introduction to Matrix Method of Analysis	Basic method of Structural Analysis, Flexibility & Stiffness matrices.	08hrs	CO1
2	Displacement Method -2D Analysis	Introduction to Matrix Methods- displacements formulation analysis of continuous beams, rigid and pin jointed plane- frames.	08hrs	CO2
3	Force Method	Matrix flexibility methods- general formulation-application to plane rigid jointed plane frame	08hrs	CO3
4	Displacement Method -3D Analysis	Displacement method for three dimensional structure- analysis of pin-jointed and rigid jointed space frames.	08hrs	CO4
5	Special Problems and Techniques	Analysis of large structures- sub-structuring static condensation procedure-Simple problems only.	08hrs	CO5
Refere	nce Books:			
	Coates, R.C., Coutie M.G., and Kor	ng, F.K, Structural Analysis, John Wiley and Sons, 1979.		
	Mc Guire, W., and Gallagher, R.H.	, Matrix Structural Analysis, John Wiley and Sons, 1979.		
	John L. Meek., Matrix structural A	nalysis, Mc Graw Hill Book Company, 1971.		
	G.S.Pandit & S.P.Gupta, Advance	Structural Analysis (A Matrix Approach) Tata Mc Graw Hill,		
e-Lea	arning Source:			
	1	F 0/		

https://nptel.ac.in/courses/105106050)/
---------------------------------------	----

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	0	0	0	0	0	0	0	1	0	2	2	3
CO2	3	3	0	1	0	0	0	0	0	1	0	2	2	3
CO3	3	3	0	1	0	0	0	0	0	1	0	2	2	3
CO4	3	3	0	1	0	0	0	0	0	1	0	2	2	3
CO5	3	3	0	2	0	0	0	0	0	1	0	2	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2019-20											
Course Code	CE503	Title of the Course	Advanced Concrete Design	L	Т	Р	С					
Year	1 st	Semester	1 st	3	1	0	4					
Pre-Requisite	CE302	Co-requisite	NIL									
Course Objectives	 To Developed the Basic Knowledge Required for Designing of Flat and Grid Slabs, Shear Wall, Deep Beam and Application of Ductile Detailing. 											

	Course Outcomes									
CO1	Understand the background of structural concrete and behavior of beam and slab.									
CO2	Able to design structure for serviceability condition (Deflection and Crack width).									
CO3	Able to design deep beam and Grid floor.									
CO4	Able to design flat slab with different support conditions.									
CO5	Understand the method of field control of concrete and concepts of detailing for ductility.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Review of Limit State Design of Beam, Column & Slab	Review of limit state design of beam, slab, ordinary column & slender column, Design of ordinary R.C wall.	08hrs	CO1
2	Introduction to Deflection & Crack Width	Calculation of deflection and crack width according to IS 456-2000, Design of spandrel beams.	08hrs	CO2
3	Design of Grid Floor, Shear Wall and Corbels	Types of shear walls, Design of Shear wall, Design of Corbels, Design of Grid floors.	08hrs	CO3
4	Design of Flat Slabs, Plates and Deep Beams	Design of flat slabs and flat plates according to ACI method, Design of deep beams	08hrs	CO4
5	Utility of Ductile Detailing and Fire Resistant Building	Detailing for ductility, fire resistance of buildings, field control of concrete.	08hrs	CO5
Refere	nce Books:			
	Purushothaman, P, Re Hill,1986.	inforced Concrete Structure Structural Elements: Behavior Analysis and Design	, Tata Mc C	iraw
	Varghese, P.C., Limit	State Design of Reinforced Concrete, prentice Hall of India, 1995.		
	Krishna Raju, N.Adva	nced Reinforced Concrete Design, CBS publishers and Distributors, 1986.		
	N. Subramanlan, Desi	gn of Reinforced Structural Oxford University Press 2014.		
-	Ashoke K. Jain, Reinf	orced Concrete Limit State Design, New Chand & Bros. Roorkee 2012		
e-Lear	ning Source			

https://nptel.ac.in/downloads/105105104/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	0	2	0	0	0	0	0	0	0	2	2	1
CO2	2	3	2	2	0	0	0	0	0	0	0	2	2	1
CO3	3	2	2	1	0	0	0	0	0	0	0	2	2	2
CO4	3	2	2	1	0	0	0	0	0	0	0	2	2	2
CO5	2	3	1	2	0	0	0	0	0	0	0	2	2	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2019-20												
Course Code	CE504	Title of the Course Concrete Technology				Р	С					
Year	1 st	Semester	1 st	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	 To und and hy To de nondes To per To fan 	derstand the types an dration of cement. velop the ability to structive tests. form Mix Proportion niliarize with special	d roles of concrete materials with in depth understan recognize the properties fresh and hardened con ing as per IS 10262-2016. types of concrete and quality control procedures.	ding o	of mar and t	ufactu o perf	ring `orm					

	Course Outcomes
CO1	Capability to perform tests on concrete materials as per Indian Standard and skill to manage the manufacturing of cement with
	in-depth knowledge of process, reaction and hydration of cement.
CO2	Quality and properties assessment of fresh concrete by performing the required tests as per Indian Standard.
CO3	Quality and properties assessment of hardened concrete by performing the required tests as per Indian Standard.
CO4	Capability to perform Mix proportioning as per IS10262 using the materials available near the concerned site and demand.
CO5	Ability to perform the quality checks on concrete structures with the knowledge of special types of concretes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Cement and Aggregates	Cement, Grade of cement, Chemical composition, testing of concrete, Hydration of cement, structure of hydrated cement. Aggregates classification, IS specifications, properties, Grading, Methods of combining aggregates, specified grading, Testing of aggregates.	08hrs	CO1
2	Fresh Concrete and Admixtures	Properties of fresh concrete: basics regarding fresh concrete – mixing, workability, placement, consolidation, and curing, segregation and bleeding. Chemical Admixtures: types and classification; actions and interactions; usage; effects on properties of concrete. Mineral Admixtures: Flyash, ground granulated blast furnace slag, rice-husk ash and silica fume; effects on properties of concrete; advantages and disadvantages.	08hrs	CO2
3	Hardened Concrete and Durability	Properties of hardened concrete: Strength- compressive tensile and flexure - Elastic properties - Modulus of elasticity – Sampling - Creep and shrinkage. Durability of concrete: Durability concept; factors affecting, reinforcement corrosion; fire resistance; frost damage; sulfate attack; alkali silica reaction; concrete in sea water, statistical quality control, acceptance criteria as per BIS code.	08hrs	CO3
4	Mix Proportioning	Principle of concrete mix design, Concrete mix proportioning using IS 10262. Ready mix concrete and its merits & demerits.	08hrs	CO4
5	Special Concrete & Concreting Methods	Light weight concrete, Fly ash concrete, Fiber reinforced concrete, polymer Concrete, Super plasticized concrete, Other special concrete, Epoxy resins and Applications High performance concrete, Extreme weather concreting, special concreting methods, vacuum dewatering underwater concrete, special from work.	08hrs	CO5
Refere	ence Books:			
	Neville, A.M.	, properties of Concrete, pitman publishing Limited, London.		
	Shetty M.S., C	Concrete Technology, S. Chand and Company Ltd. Delhi.		
	Rudhani G., L	ight Weight Concrete Academic Kiado, Publishing Home of Hungarian Academy of Scie	nces, 1963.	
e-Lea	arning Source:			
	https://nptel.ac	c.in/courses/105102012/		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	0	2	2	0	0	2	0	0	0	0	3	2	3
CO2	3	0	0	2	0	0	0	0	0	0	0	3	2	3
CO3	3	0	0	2	0	0	0	0	0	0	0	3	2	3
CO4	3	0	3	1	0	2	1	3	0	0	0	3	1	3
CO5	3	0	0	0	0	2	0	3	0	0	0	3	0	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16								
Course Code	CE509 Title of the Course		Structural Engineering Laboratory	L	Т	Р	С	
Year	1 st	t Semester 1 st 0 0						
Pre-Requisite	NIL	NIL Co-requisite NIL						
Course Objectives	 To und and hy To de nondes To per To fan 	derstand the types an dration of cement. velop the ability to structive tests. form Mix Proportion niliarize with special	d roles of concrete materials with in depth understan recognize the properties fresh and hardened con ing as per IS 10262-2016. types of concrete and quality control procedures.	ding o	of mar and t	ufactu o perf	ring orm	

	Course Outcomes
CO1	Capability to perform tests on concrete materials as per Indian Standard to retrieve data for mix proportioning.
CO2	Capability to perform Mix proportioning as per IS10262 to meet concrete performance.
CO3	Quality assessment of mix proportioning by performing the required tests on fresh concrete as per Indian Standard.
CO4	Quality assessment of mix proportioning by performing the non-destructive tests on hardened concrete as per Indian Standard.
CO5	Quality assessment of mix proportioning by performing the destructive tests on hardened concrete as per Indian Standard.

Unit No.	Unit Title	Content of Unit	Contact Hrs.	Mapped CO
1	Exercise 1	Testing of fine and coarse aggregate. (Specific Gravity, Water Absorption and Sieve Analysis)	03hrs	CO1
2	Exercise 2	Concrete mix design.	03hrs	CO2
3	Exercise 3	Properties and testing of fresh concrete. (Workability by Slump, Bleeding and Honey Combing Visually)	03hrs	CO3
4	Exercise 4	Non- destructive testing of hardened concrete. (Rebound Hammer Test)	03hrs	CO4
5	Exercise 5	Destructive testing of hardened concrete. (Compression Test of Cube, Flexure Test of Prism)	03hrs	CO5
6	Exercise 6	Plotting of distribution Curve.	03hrs	CO5
7	Exercise 7	Strength, fracture and micro structural characteristics of mild steel.	03hrs	CO4

			Cours	se Articu	ilation N	Matrix:	(Mapping	of COs	with P	Os and l	PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	0	0	0	3	3	2	0	0	3	3	0	3	3	3
CO2	0	0	0	3	3	2	0	0	3	3	0	3	3	3
CO3	0	0	0	3	3	2	0	0	3	3	0	3	3	3
CO4	0	0	0	3	3	2	0	0	3	3	0	3	3	3
CO5	0	0	0	3	3	2	0	0	3	3	0	3	3	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2016-17									
Course Code	CE510	Title of the CourseStructural DynamicsLTH								
Year	1 st	Semester 2^{nd} 3 1 0								
Pre-Requisite	NIL	Co-requisite	NIL							
Course Objectives	To developed the concept of structural dynamics.									
Course Objectives	• To analysis and design structures subjected to dynamics loading.									

	Course Outcomes
CO1	Lerner will be able to identify, formulate and solve free response of single degree freedom system.
CO2	Lerner will be able to identify, formulate and solve forced response of single degree freedom system.
CO3	Lerner will be able to determine natural frequencies & modes shapes of multi degree of freedom system by approximate methods
CO4	Lerner will be able to determine response of lumped multi degree of freedom system using normal mode theory & numerical integration scheme
CO5	Learner will be made aware of continues system and analysis of tall structures under dynamics loading

Unit No.	it Title of the Unit Content of Unit						
1	Introduction & Free Vibration of Single Degree of Freedom System	Basic conpets of vibration, dynamic loading, types of vibration and ground motions. Free vibration of single degree of freedom system.	08hrs	CO1			
2	Forced Vibrations of Single Degree of Freedom System	08hrs	CO2				
3	Free Vibration of Multi Degree of Freedom System	08hrs	CO3				
4	Lumped Multi Degree of Freedom System	Frequency domain analysis of lumped multi degree of freedom system using normal mode theory, Time domain analysis using Numerical Integration Scheme.	08hrs	CO4			
5	Free and Forced Vibrations of Continuous System Free and forced vibrations of continuous system; Dynamic analysis of tall and massive structures. C						
		Reference Books:					
	Glen V.Berg – Element of str	uctural Dynamics.					
	Agarwal, Pankaj; & Shrikhan	de, Manish; Earthquake Resistant Design of Structures.					
	Paz, Mario; Structural Dynam	ics – Theory and Computations.					
	Chopra, Anil Kumar; - Dynar	nics of Structures.					
	Damodar Swami - Structural Dynamics & A seismic Design.						
	e-Learning Source:						
	https://nptel.ac.in/courses/105	106176/					
	https://nptel.ac.in/downloads/	105105104/					

			Cou	irse Arti	iculatio	n Matri	x: (Map	ping of	COs wi	th POs a	nd PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	1	1	2	0	0	1	1	0	1	0	0
CO2	3	3	2	1	1	1	0	0	1	1	0	1		
CO3	3	2	2	1	1	2	0	1	1	1	0	1	0	0
CO4	3	3	2	2	1	1	0	0	1	0	0	1	0	0
CO5	3	2	2	1	1	2	0	1	1	1	0	1	0	0
		1 L	W Com	alation	2 Mod	orato C	orrolati	an. 2 C	ubstant	ial Corro	lation			

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2018-19							
Course Code	CE511 Title of the Course N		Numerical Analysis and Finite Element Method	L	Т	Р	С
Year	1 st	st Semester 2 nd 3					4
Pre-Requisite	NIL Co-requisite NIL						
Course Objectives	 To und and hy To dev nondes To per To fan 	lerstand the types and dration of cement. velop the ability to re- structive tests. form Mix Proportion niliarize with special	d roles of concrete materials with in depth understand cognize the properties fresh and hardened concrete ar ing as per IS 10262-2016. types of concrete and quality control procedures.	ing o nd to p	f manu perforr	ifacturi n	ing

	Course Outcomes
CO1	Capability to perform tests on concrete materials as per Indian Standard and skill to manage the manufacturing of cement with
	in-depth knowledge of process, reaction and hydration of cement.
CO2	Quality and properties assessment of fresh concrete by performing the required tests as per Indian Standard.
CO3	Quality and properties assessment of hardened concrete by performing the required tests as per Indian Standard.
CO4	Capability to perform Mix proportioning as per IS10262 using the materials available near the concerned site and demand.
CO5	Ability to perform the quality checks on concrete structures with the knowledge of special types of concretes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Numerical Solution to Linear Equation	Newton-Raphson Method, Regula-Falsi Method, Gauss-Elimination Method, Gauss-Jordan Method, Gauss-Jacobi Method.	08hrs	CO1
2	Numerical Solution to Integration & Ordinary Differential Equations	Trapezoidal Rule for Single & Multiple Integration, Simpson's 1/3rd Rule, Simpson's 3/8th Rule, Simpson Double integration, Taylor's Series Method, Runge-Kutta Method.	08hrs	CO2
3	Interpolation & Boundary Value Problems	Gauss's Forward Interpolation, Gauss's Backward Interpolation, Divided Differences Method, Finite Difference Method, Galerkins's Method.	08hrs	CO3
4	Finite Element Methods -1	Introduction of FEM, Various types of Finite Elements, Stiffness Matrix of Spring Elements, Problems on Assemble of Spring Elements, Derivation of Stiffness Matrix of Bar Elements, Problems on Assemble of Bar Elements.	08hrs	CO4
5	Finite Element Methods -2	Shape Function of Beam Elements, Problem on Beam Elements, Global & Local Coordinate System, Transformation Matrix. Shape Function of 2D Element.	08hrs	CO5
Refere	nce Books:			
Kı	rishnamurathy, Finite Element	Analysis.		
Bı	udvanan, G.R. Finite Element	Analysis.		
Zi	enkiewiez, O Finite Element N	Iethod its Basic & Fundamentals		

e-Learning Source:

https://nptel.ac.in/courses/105105041/ https://nptel.ac.in/courses/111107062/

			Cours	se Articu	ilation N	Matrix:	(Mapping	of COs	with P	Os and l	PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	3	0	3	0	0	0	0	0	0	0	0	2	1
CO2	3	3	0	3	0	0	0	0	0	0	0	0	2	1
CO3	3	3	0	3	0	0	0	0	0	0	0	0	2	1
CO4	3	3	0	3	0	0	0	0	0	0	0	3	3	1
CO5	3	3	0	3	0	0	0	0	0	0	0	3	3	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17											
Course Code	CE512	Title of the Course	Advanced Steel Structures		Т	Р	С				
Year	1 st	Semester	2 nd	3	1	0	4				
Pre-Requisite	NIL Co-requisite NIL										
Course Objectives	 To im conne To im To im To stu To im 	part behavior and der ctions. part behavior and der part requirements and dy the behavior and part the concept and	sign procedures of tension members, compression me sign procedures of flexural member. d concepts involves in analysis and design of steel ch design requirements of Industrial building. application of plastic analysis in steel structures	mber	s and /s & to	owers.					

	Course Outcomes									
CO1	Learner should be able to understand the types and design requirement of tension and compression steel members, then									
	they should be able to design them with connections for given conditions by following the guidelines of Indian codes.									
CO2	Learner should be able to understand the behavior of steel flexure member, then able to analysis and design them with									
	connections for given conditions by following the guidelines of Indian codes									
CO3	Learner should know the structural behavior of tower and chimney, then should be able to design self supported steel chimney									
	and tower as Indian code provisions									
CO4	Learner should be able to understand the requirement and behavior of Industrial building and also able to design elements of									
	industrial building for given conditions by following guide line of Indian codes.									
CO5	Learner should be able to apply concept of plastic analysis to analysed steel structures for given conditions									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Design of Steel Structural Element	Connections, Design of compression and tension members.	08hrs	CO1
2	Flexural Member	Design of rolled section beams and plate girder.	08hrs	CO2
3	Tower & Chimney	Analysis and design of steel towers. Design of self-supporting chimney.	08hrs	CO3
4	Industrial Building	Analysis and design of industrial buildings and bents – Design of bracings – Design of crane and gantry girder	08hrs	CO4
5	Plates Analysis & Design	Plastic design of beams, shape factors, moment distribution. Plastic analysis of fixed and continuous beams, propped cantilevers, single bay and two bay portal frames.	08hrs	CO5
Refere	nce Books:			
	Sarvar Alam Raaz	-Design of Steel Structures.		
	Kazmi and Jindal-	-Design of Steel Structures.		
	Limit State Design	n of Steel Structures by S. K. Duggal, Tata Mc-Graw-Hill Publishing Company.		
	IS-800-2007And I	S-800-1984		
e-Lea	arning Source:			
	https://nptel.ac.in/	courses/105105162/		
	https://nptel.ac.in/	courses/105106113/18		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	3	3	0	0	0	0	3	0	1	0	2	1	3
CO2	3	3	3	0	0	0	0	3	0	1	0	2	1	3
CO3	3	3	3	0	0	0	0	3	0	1	0	2	1	3
CO4	3	3	3	0	0	0	0	3	0	1	0	2	1	3
CO5	3	3	3	0	0	0	0	3	0	1	0	2	1	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2016-17											
Course Code	CE552	Title of the Course	Research Methodology	L	Т	Р	С					
Year	1 st	Semester	2 nd	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	 To dev To ide researce 	velop critical thinking ntify appropriate rese ch report	and understand the concept of gap identification for arch methods for a specific research problem and pre	reseai pare j	rch. profess	ional						

	Course Outcomes
CO1	Develop the student's understanding of research methods and applying those methodology to solve complex research
	problems.
CO2	Develop student's understanding of sampling techniques for research.
CO3	Develop student's understanding of different data collection methods and their suitability.
CO4	Students will gain understanding of analyzing the quantitative data.
CO5	Students will gain understanding of analyzing the qualitative data and will learn how to write a professional research report.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Research & Problem Definition	Meaning, Objective and importance of research, Types of research, research process, Challenges in research, Philosophical worldviews in research.	08hrs	CO1
2	Research Design	Research design, Methods of research design, Selection of a Research Design research process and steps involved, Literature Survey, Bibliometric analysis.	08hrs	CO2
3	Data Collection	Sample Design, Sampling Methods, sampling errors, Classification of Data, Measurement and Scaling, Methods of Data Collection, data preparation.	08hrs	CO3
4	Data Analysis and interpretation	Data analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis, Hypothesis testing, Data processing software (e.g. SPSS etc.), statistical inference, Interpretation of results.	08hrs	CO4
5	Technical Writing and Reporting of Research	Types of research report: Dissertation and Thesis, research paper, review article, short communication, conference presentation etc., Referencing and referencing styles, Mechanics of writing a report, Research Journals, Indexing and citation of Journals, Intellectual property, Plagiarism, Oral Presentation.	08hrs	CO5
Refere	nce Books:			
	C R Kothari Gaur	av Garg Research Methodology · Methods And Techniques, New Age Internation	al Publisher	s Fourth

C. R. Kothari, Gaurav Garg, Research Methodology : Methods And Techniques, New Age International Publishers; Fourth edition (1 September 2019)

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.

e-Learning Source:

https://onlinecourses.nptel.ac.in/noc22_ge08/preview

			Cour	se Artic	lation Ma	trix: (Ma	pping	of COs	with P	Os and I	PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	3	3	1	0	0	0	0	0	0	0	0	0	0	0
COI	5	5	1	0	0	0	0	0	0	0	0	0	0	0
CO2	3	3	2	0	0	0	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0	0	0
CO4	3	3	2	3	3	0	0	0	0	0	0	0	0	0
CO5	3	3	0	0	0	0		3	0	3	0	0	0	0

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016-17								
Course Code CE514		Title of the Course	Seminar	L	Т	Р	С	
Year 1 st Seme		Semester	2 nd	0	0	3	2	
Pre-Requisite NIL Co-requisite		Co-requisite	NIL					
Course Objectives	 To understand organization of topic for presentation and research. To learn the skill set required to perform research. 							

Course Outcomes					
CO1	Skill to search on any topic to extract the inference.				
CO2	Ability to organize – deliver presentation and report on any topic.				

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Seminar shall be delivered preferably on the topic of dissertation or at least the area of dissertation.		CO1 and CO2
	The concepts must be clearly understood and presented by the student. Prior to presentation, he/she		
	shall carry out the detailed literature survey from Standard References such as International	03hrs	
	Journals and Periodicals, recently published reference Books etc. All modern methods of		
	presentation should be used by the student. A hard copy of the report (25 to 30 pages) should be		
	submitted to the Department before delivering the seminar. A PDF copy of the report in soft form		
	must be submitted to the supervisor along with other details if any. Supervisor should guide		
	concern student 2hrs /week/student for seminar.		

		Course Articulation Matrix: (Mapping of Cos with Pos and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	1	2	1	3	3	0	3	3	3
CO2	0	0	0	0	3	1	2	1	3	3	0	3	3	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD